\(\int \frac {(a+b x^2)^{3/2}}{x^2 \sqrt {c+d x^2}} \, dx\) [952]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 244 \[ \int \frac {\left (a+b x^2\right )^{3/2}}{x^2 \sqrt {c+d x^2}} \, dx=\frac {(b c+a d) x \sqrt {a+b x^2}}{c \sqrt {c+d x^2}}-\frac {a \sqrt {a+b x^2} \sqrt {c+d x^2}}{c x}-\frac {(b c+a d) \sqrt {a+b x^2} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{\sqrt {c} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}+\frac {2 b \sqrt {c} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}} \]

[Out]

(a*d+b*c)*x*(b*x^2+a)^(1/2)/c/(d*x^2+c)^(1/2)-(a*d+b*c)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x*d^
(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*(b*x^2+a)^(1/2)/c^(1/2)/d^(1/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(
1/2)/(d*x^2+c)^(1/2)+2*b*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2)
,(1-b*c/a/d)^(1/2))*c^(1/2)*(b*x^2+a)^(1/2)/d^(1/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(d*x^2+c)^(1/2)-a*(b*x^2+a
)^(1/2)*(d*x^2+c)^(1/2)/c/x

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 244, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {485, 545, 429, 506, 422} \[ \int \frac {\left (a+b x^2\right )^{3/2}}{x^2 \sqrt {c+d x^2}} \, dx=\frac {2 b \sqrt {c} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac {\sqrt {a+b x^2} (a d+b c) E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{\sqrt {c} \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac {a \sqrt {a+b x^2} \sqrt {c+d x^2}}{c x}+\frac {x \sqrt {a+b x^2} (a d+b c)}{c \sqrt {c+d x^2}} \]

[In]

Int[(a + b*x^2)^(3/2)/(x^2*Sqrt[c + d*x^2]),x]

[Out]

((b*c + a*d)*x*Sqrt[a + b*x^2])/(c*Sqrt[c + d*x^2]) - (a*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(c*x) - ((b*c + a*d)
*Sqrt[a + b*x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(Sqrt[c]*Sqrt[d]*Sqrt[(c*(a + b*x^2)
)/(a*(c + d*x^2))]*Sqrt[c + d*x^2]) + (2*b*Sqrt[c]*Sqrt[a + b*x^2]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 -
(b*c)/(a*d)])/(Sqrt[d]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 485

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[c*(e*x)^(
m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q - 1)/(a*e*(m + 1))), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)
*(a + b*x^n)^p*(c + d*x^n)^(q - 2)*Simp[c*(c*b - a*d)*(m + 1) + c*n*(b*c*(p + 1) + a*d*(q - 1)) + d*((c*b - a*
d)*(m + 1) + c*b*n*(p + q))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0]
 && GtQ[q, 1] && LtQ[m, -1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rubi steps \begin{align*} \text {integral}& = -\frac {a \sqrt {a+b x^2} \sqrt {c+d x^2}}{c x}+\frac {\int \frac {2 a b c+b (b c+a d) x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{c} \\ & = -\frac {a \sqrt {a+b x^2} \sqrt {c+d x^2}}{c x}+(2 a b) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx+\frac {(b (b c+a d)) \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{c} \\ & = \frac {(b c+a d) x \sqrt {a+b x^2}}{c \sqrt {c+d x^2}}-\frac {a \sqrt {a+b x^2} \sqrt {c+d x^2}}{c x}+\frac {2 b \sqrt {c} \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}+(-b c-a d) \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx \\ & = \frac {(b c+a d) x \sqrt {a+b x^2}}{c \sqrt {c+d x^2}}-\frac {a \sqrt {a+b x^2} \sqrt {c+d x^2}}{c x}-\frac {(b c+a d) \sqrt {a+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{\sqrt {c} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}+\frac {2 b \sqrt {c} \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.12 (sec) , antiderivative size = 206, normalized size of antiderivative = 0.84 \[ \int \frac {\left (a+b x^2\right )^{3/2}}{x^2 \sqrt {c+d x^2}} \, dx=\frac {-a \sqrt {\frac {b}{a}} d \left (a+b x^2\right ) \left (c+d x^2\right )-i b c (b c+a d) x \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )-i b c (-b c+a d) x \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right ),\frac {a d}{b c}\right )}{\sqrt {\frac {b}{a}} c d x \sqrt {a+b x^2} \sqrt {c+d x^2}} \]

[In]

Integrate[(a + b*x^2)^(3/2)/(x^2*Sqrt[c + d*x^2]),x]

[Out]

(-(a*Sqrt[b/a]*d*(a + b*x^2)*(c + d*x^2)) - I*b*c*(b*c + a*d)*x*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*Ellipt
icE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] - I*b*c*(-(b*c) + a*d)*x*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*Elli
pticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)])/(Sqrt[b/a]*c*d*x*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])

Maple [A] (verified)

Time = 4.90 (sec) , antiderivative size = 289, normalized size of antiderivative = 1.18

method result size
risch \(-\frac {a \sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}{c x}+\frac {b \left (\frac {2 a c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c b \,x^{2}+a c}}-\frac {\left (a d +b c \right ) c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (F\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-E\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c b \,x^{2}+a c}\, d}\right ) \sqrt {\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}}{c \sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}\) \(289\)
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}\, \left (-\frac {a \sqrt {b d \,x^{4}+a d \,x^{2}+c b \,x^{2}+a c}}{c x}+\frac {2 a b \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c b \,x^{2}+a c}}-\frac {\left (b^{2}+\frac {a b d}{c}\right ) c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (F\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-E\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c b \,x^{2}+a c}\, d}\right )}{\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}\) \(294\)
default \(\frac {\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}\, \left (-\sqrt {-\frac {b}{a}}\, a b \,d^{2} x^{4}+\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a b c d x -\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{2} c^{2} x +\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, E\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a b c d x +\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, E\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{2} c^{2} x -\sqrt {-\frac {b}{a}}\, a^{2} d^{2} x^{2}-\sqrt {-\frac {b}{a}}\, a b c d \,x^{2}-\sqrt {-\frac {b}{a}}\, a^{2} c d \right )}{\left (b d \,x^{4}+a d \,x^{2}+c b \,x^{2}+a c \right ) c x \sqrt {-\frac {b}{a}}\, d}\) \(352\)

[In]

int((b*x^2+a)^(3/2)/x^2/(d*x^2+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-a*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)/c/x+1/c*b*(2*a*c/(-b/a)^(1/2)*(1+b*x^2/a)^(1/2)*(1+d*x^2/c)^(1/2)/(b*d*x^4+
a*d*x^2+b*c*x^2+a*c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(-1+(a*d+b*c)/c/b)^(1/2))-(a*d+b*c)*c/(-b/a)^(1/2)*(1+b*x^
2/a)^(1/2)*(1+d*x^2/c)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)/d*(EllipticF(x*(-b/a)^(1/2),(-1+(a*d+b*c)/c/b
)^(1/2))-EllipticE(x*(-b/a)^(1/2),(-1+(a*d+b*c)/c/b)^(1/2))))*((b*x^2+a)*(d*x^2+c))^(1/2)/(b*x^2+a)^(1/2)/(d*x
^2+c)^(1/2)

Fricas [F]

\[ \int \frac {\left (a+b x^2\right )^{3/2}}{x^2 \sqrt {c+d x^2}} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{\frac {3}{2}}}{\sqrt {d x^{2} + c} x^{2}} \,d x } \]

[In]

integrate((b*x^2+a)^(3/2)/x^2/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

integral((b*x^2 + a)^(3/2)*sqrt(d*x^2 + c)/(d*x^4 + c*x^2), x)

Sympy [F]

\[ \int \frac {\left (a+b x^2\right )^{3/2}}{x^2 \sqrt {c+d x^2}} \, dx=\int \frac {\left (a + b x^{2}\right )^{\frac {3}{2}}}{x^{2} \sqrt {c + d x^{2}}}\, dx \]

[In]

integrate((b*x**2+a)**(3/2)/x**2/(d*x**2+c)**(1/2),x)

[Out]

Integral((a + b*x**2)**(3/2)/(x**2*sqrt(c + d*x**2)), x)

Maxima [F]

\[ \int \frac {\left (a+b x^2\right )^{3/2}}{x^2 \sqrt {c+d x^2}} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{\frac {3}{2}}}{\sqrt {d x^{2} + c} x^{2}} \,d x } \]

[In]

integrate((b*x^2+a)^(3/2)/x^2/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^(3/2)/(sqrt(d*x^2 + c)*x^2), x)

Giac [F]

\[ \int \frac {\left (a+b x^2\right )^{3/2}}{x^2 \sqrt {c+d x^2}} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{\frac {3}{2}}}{\sqrt {d x^{2} + c} x^{2}} \,d x } \]

[In]

integrate((b*x^2+a)^(3/2)/x^2/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^(3/2)/(sqrt(d*x^2 + c)*x^2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b x^2\right )^{3/2}}{x^2 \sqrt {c+d x^2}} \, dx=\int \frac {{\left (b\,x^2+a\right )}^{3/2}}{x^2\,\sqrt {d\,x^2+c}} \,d x \]

[In]

int((a + b*x^2)^(3/2)/(x^2*(c + d*x^2)^(1/2)),x)

[Out]

int((a + b*x^2)^(3/2)/(x^2*(c + d*x^2)^(1/2)), x)